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Abstract In simulation, Median Polish Kriging is a technique 

used to predict unobserved data points in two-dimensional space. 

The linear behavior of the traditional Median Polish Kriging in 

the estimation of the mean function in a high grid makes the 

interpolation of O(1) which has a low order in the prediction and 

that leads to a high prediction error. Therefore, an improvement 

in the estimation of the mean function has been introduced using 

Biharmonic spline interpolation and the new technique has been 

called Improved Median Polish Kriging (IMPK). The IMPK has 

been applied to the standard coal-ash data in two-dimension. The 

novel method gave much better results according to the cross 

validation results that were obtained when compared with the 

traditional Median Polish Kriging. 
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1. Introduction 

In some simulation experiments, we might want to use 

the observed data themselves to specify directly (in some 

sense) a distribution, this is called an empirical distribution, 

from which random values are generated during the 

simulation, rather than fitting a theoretical distribution to 

the data. Simulation models are often tedious to build, 

need substantial data for input modeling, and require 

significant time to run, particularly when there are many 

alternatives to evaluate. Consequently, statistical 

approximations are becoming widely used in engineering 

to construct simplified approximations, or metamodels, of 

these analysis codes that are then used instead of the actual 

analysis codes, providing a surrogate model of the original 

code. A metamodel is an approximation of the input/output 

(I/O) transformation that is implied by the simulation 

model; the resulting black-box model is also known as a 

response surface or emulator [4]. The most widely used 

method for metamodels in simulation is Kriging. Kriging 

is a group of geostatistical techniques to interpolate the 

value of a random field at an unobserved location from 

observations of its value at nearby locations. The first use 

of kriging in simulation was found by [11]. 

Kriging technique was originally evolved in geostatistics 

by D. G. Krige [5], and has recently been widely applied in 

deterministic simulation, it gives more weight to 

‘neighboring’ observations. Actually, Kriging give quite 

acceptable predictions; traditional linear regression gives 

the worst results [10]. Kriging provides exact interpolation, 

i.e., the predicted output values at ‘old’ input combinations 

already observed are equal to the simulated output values 

at those  inputs (‘inputs’ are also called ‘factors’; ‘input 

combinations’ are also called ‘scenarios’) [3]. Obviously, 

such interpolation is appealing in deterministic simulation. 

Kriging and deterministic simulation are often applied in 

Computer Aided Engineering (CAE) for the (optimal) 

design of airplanes, automobiles, computer chips, 

computer monitors, etc.; [6]. 

2. Kriging Preliminaries 

The primary motivation behind the use of Kriging in most 

earth science applications, and one of the essential reasons 

for its introduction, is that it is non-parametric. Moreover, 

the kriging model has been used as a metamodel in the 

design and analysis of computer experiments (DACE) [6]. 

In the application of kriging model in the field of 

simulation, the parameters of the model are likely to be 

estimated from the simulated data. In building the kriging 

model and its predictor, in addition to the sample 

observations, the best linear unbiased estimator (BLUE) 

depends on the parameters in the mean and the covariance 

parameters. In an ideal situation, these parameters are 

assumed known. In practice however, these parameters can 

only be estimated from sample data, making them random 

variables dependent on the experimental design and 

sample observations. 

Mathematically speaking, a random process Z(.) can be 

described by {Z(s):sD} where D is a fixed subset of Rd 

and Z(s) is a random function at locations s1,s2,…,sn; [2]. 

The basic form of the kriging estimator is, 
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Where Z(s1),Z(s2),…,Z(sn) are observed values which are 

obtained at the nth known locations s1, s2,...,sn in solution 

space, which shows an estimated value of Z*(s) at sD, 

which is the point where we want to estimate the value of 

the function, also we may note that: 
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Actually, the goal is to determine weights, i 's that 

minimize the variance of the estimator, [11], is: 

 )()()( *2 sZsZVarsE   

under the unbiasedness constraint  

  0)()(*  sZsZE  

Now, we assume that the trend component is a constant 

and known mean, m (s) = m, so that  
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This estimate is automatically unbiased, so that 

E[Z*(u)]=m=E[Z(u)]. The estimation error Z*(u)-Z(u) is a 

linear combination of random variables representing 

residuals at the data points, si , and the estimation point, s, 

[9]: 
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 (3) 

We can write (3) in another form as, 
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Using rules for the variance of a linear combination of 

random variables, the error variance is then given by 
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To minimize the error variance, we take the derivative of 

the above expression with respect to each weight of the 

kriging weights and set each derivative to zero. This leads 

to the following system of equations: 
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Since the mean is assumed to be constant in ordinary 

kriging, the covariance function for Z(u) is the same as that 

for the residual component, C(h)=CR(h), so that we can 

write the simple kriging system directly in terms of C(h) : 
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As a result, this can be written as system of simultaneous 

equations in matrix form as [7], 

K (u)=k  

where K is the matrix of covariance between data points, 

with elements Ki,j=C(si-sj), k is the vector of covariance 

between the data points and the estimation point, with 

elements given by ki =C(si-s), and  (s) is the vector of 

simple kriging weights. After that, we can solve for the 

above system for kriging weights as: 

kK 1   

Finally, it should be observed that stationary of the 

variogram is not a necessary requirement for kriging; it is 

assumed for pragmatic reasons, to allow the variogram to 

be estimated from the data, [2]. 

3. Median Polish Kriging 

Median Polish Kriging (MPK) was introduced by [2], 

it is a hybrid method combining both Kriging and linear 

spline interpolation to predict a two-dimensional surface 

for spatial data. The median polish algorithm gives as an 

estimate of the mean component as 

data = all effect + row effect + column effect + 
residual 

by subtracting the medians of each row from the row 

values, then the medians of the columns from the column 

values, and recording them in the row effect and column 

effect variables. This process is repeated until 

convergence, that is, until the row and column medians are 

0. 

Spatial data can be thought of Median Polish as a partial 

sampling of a realization of a random process { Z(s) : 

sD}, and may be represented by the following formula: 

)()()( sRssZ    (4) 

Now, (.) is the mean structure and R(.) is the residual 

structure. In reality, (.) is not known, in dimensions 

higher than one, it is natural to assume (.) decomposes 

additively into directional components, [2]. In this article, 

our concern is in R
2
. Therefore, assume: 

(s) = a + r( x ) + c( y )  

Where a  is the overall effect using Median Polish and r(x) 

is the row effect and c(x) is the column effect. Furthermore, 

the points {si: i=1,2,…n} are actually on a grid { (xl,yk) : 

l=1,2,…q, k=1,2,…p}. 

Now, (.) given in equation (4) satisfying the values at the 

grid point only. Hence, to interpolate the data between the 

exact grid points, a linear interpolation between row effect 

and column effect and the overall total effect is: 
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Where s=(x,y) in the region bounded by the four nodes 

(xl,yk), (xl+1,yk), (xl,yk+1), (xl+1,yk+1), where xl<xl+1 and 

yk<yk+1. For observations lie outside the grid an 

extrapolation technique used in MPK was constructed by 

the following formula. Suppose x<x1 then, 
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For y<y1, we may get 
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The median polish residuals R(.) can be considered to be 

stationary. Therefore， the residuals can be analyzed by 

using the ordinary Kriging, [2]. Hence, 
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According to equation (4) we may have, 
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Actually, )(ˆ sZ is an exact interpolator that uses a linear 

extrapolation method to extrapolate the points inside a 

high resolution grid which is finer than the original low 

resolution grid. 

4. Biharmonic Spline Interpolation 

The method of minimum curvature is an old and ever-

popular approach for constructing smooth surfaces from 

irregularly spaced data. In one-dimensional case, the 

minimum curvature method leads to the natural cubic 

spline interpolation. In two-dimensional case, a surface can 

be interpolated with biharmonic spline. A simpler 

algorithm for finding the minimum curvature surface that 

passes through a set of nonuniformly spaced data points, 

[8]. 

Obviously, the spline has zero fourth derivative, hence; the 

spline will satisfy the biharmonic equation as: 
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The particular solution to (5) is 
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When this green function is used to interpolate N data 

points, wi, located at xi the problem is 
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The particular solution to equations (6) and (7) is a linear 

combination of points forced Green functions centered at 

each data point. Therefore, we have 
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The strength of each point force, j , is found by solving 

linear system  
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If slopes, Si , are used rather than values, then the j 's are 

determined by solving the following linear system 
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Once j 's are determined, the biharmonic function w(x) 

can be evaluated at any point using equation (8), [8]. 

5. Improved median polish kriging 

The method of Improved Median Polish Kriging 

(IMPK) is an improvement of the traditional Median 

Polish Kriging. The improvement is concerned with the 

estimation of the mean function (.), i.e. the Biharmonic 

spline interpolation is replaced by the linear spline 

interpolation. Kriging and spline are formally alike, but 

practically different. Both disciplines can benefit from 

each other's knowledge base. There is a formal connection 

between these two very important methods of 

interpolation, but there is a large divergence in how they 

are applied and how their results are interpreted. In this 

article, we must mention the method of modified median 

polish Kriging (MMPK) proposed by [1] which uses a 

different technique to estimate the mean function (.). To 

distinguish  between our proposed method (IMPK) and 

MMPK, the method of MMPK using universal Kriging to 

estimate the mean function (.) which needs more in 

computer time. Since each unobserved point in the high 

resolution grid for mean function (.) needs to be 

estimated using universal Kriging, what about time 

consuming here?. Alternatively, IMPK uses Biharmonic 

interpolation to interpolate and extrapolate the nodes inside 

and outside the high resolution grid. Now, we will derive 

the general formula for the IMPK using Biharmonic spline 

interpolation. 

For N data in two dimensions the problem is: 
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Where )(ˆ sus  and 
4 is the biharmonic operator and s is 

the unobserved data point in m-dimension. Then, the 

general solution is  
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Where m  can be found for each dimension in Table(1).  

Table 1. Biharmonic Green Functions [8] 

Number of dimensions (m) Green function m  

1 |x|3 

2 |x|2(ln|x|-1) 

3 |x| 

4 ln|x| 

5 |x|-1 

6 |x|-2 
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m |x|4-m 

Since, our concern in this work is in two-dimensional 

simulation space, then 2  can be substituted in (9) leading 

to: 

   
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 (10) 

Which is the Biharmonic interpolator of the mean function 

(.) in a high resolution grid. Therefore, (s) can be 

substituted by w(s) in equation (4), yields  

Now, our concern is to estimate the residuals R(s) in 

equation (4). Basically, the same technique used by the 

original MPK. The residual values {R(si) : 1,2 …,n} can 

be used as a new data set to allow new fresh observations 

as low resolution grid that can be used by ordinary Kriging 

to predict all the residual values on a finer grid. Therefore, 

we can predict the values of the residuals as: 
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Hence, equation (4) can be written as: 
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Therefore, w(s) is an exact approximation of )(ˆ su . Then, 

we can write (4) in an approximated (predicted) form as: 
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And the final formula for IMPK formula is 

   



N

i

ii

N

j

jjj sRsssssZ
11

)(1ln2)(ˆ    

The final formula must be smoother because it is non-

linear function of the unobserved data points. Conversely, 

the traditional MPK uses linear interpolation which is 

linear, i.e. has first order approximation O(1). 

6. Experimental Results 

Experimentally, we have used the standard coal-Ash 

data given by [2], which is standard data set to investigate 

the prediction of Kriging model. This data collection has 

been used by many authors as a standard two-dimensional 

input data for the response surfaces (metamodels). In this 

article, we have showed that the newly developed methods 

did not only prove to be of academic interest, but also very 

useful in simulating two-dimensional surfaces. 
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(b) 

Fig. 1: Surface prediction using (a) IMPK (b) MPK

 

Graphically speaking, we can see that figure (1.a) have 

smoother surface than figure (1.b). Also, the cross 

validation method has been used here to validate our 

Improved Median Polish Kriging (IMPK). The RMSE 

used to validate IMPK is given in table (2) as: 

 

 

Table 2: Root Mean Square Error for IMPK and MPK 

  IMPK MPK 

RMSE  1.170527 1.701783 

 

According to figure (2), we can see that the variance in the 

IMPK method is smoother than MPK. Hence, the 

prediction may be more adequate in the increasing and 

decreasing sub-surface in the original surface. 
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(b) 

Fig. 2: Error maps for (a) IMPK (b) MPK 

 

7. Conclusions 

In this article, we developed a novel method to predict 

two-dimensional surface in any simulated metamodel. The 

interpolation type arises as a critical point in the prediction. 

The resulted surface gave a smoother shape than 

traditional MPK that will be suitable to mimics the original 

surface (system). The pros and cons of the new method 

have been presented. The first recommendation for the 

future work is to generalize this method in three-

dimensions and multi-dimensions. The second 

recommendation is the use of Hermit interpolation in the 

finer grid interpolation since its structure could be suitable 

in median Polish Kriging because it is a robust non-linear 

interpolation. 
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